Mechanisms of potentiation of mossy fiber EPSCs in the cerebellar nuclei by coincident synaptic excitation and inhibition.
نویسندگان
چکیده
Neurons of the cerebellar nuclei receive synaptic excitation from cerebellar mossy fibers. Unlike in many principal neurons, coincident presynaptic activity and postsynaptic depolarization do not generate long-term potentiation at these synapses. Instead, EPSCs are potentiated by high-frequency trains of presynaptic activity applied with postsynaptic hyperpolarization, in patterns resembling mossy-fiber-mediated excitation and Purkinje-cell-mediated inhibition that are predicted to occur during delay eyelid conditioning. Here, we have used electrophysiology and Ca imaging to test how synaptic excitation and inhibition interact to generate long-lasting synaptic plasticity in nuclear cells in cerebellar slices. We find that the extent of plasticity varies with the relative timing of synaptic excitation and hyperpolarization. Potentiation is most effective when synaptic stimuli precede the postinhibitory rebound by approximately 400 ms, whereas with longer intervals, or with a reverse sequence, EPSCs tend to depress. When basal intracellular Ca is raised by spontaneous firing or reduced by voltage clamping at subthreshold potentials, potentiation is induced as long as the synaptic-rebound temporal sequence is maintained, suggesting that plasticity does not require Ca levels to exceed a threshold or attain a specific concentration. Although rebound and spike-dependent Ca influx are global, potentiation is synapse specific, and is disrupted by inhibitors of calcineurin or Ca-calmodulin-dependent protein kinase II, but not PKC. When IPSPs replace the hyperpolarizing step in the induction protocol, potentiation proceeds normally. These results lead us to propose that synaptic and inhibitory/rebound stimuli initiate separate processes, with local NMDA receptor-mediated Ca influx "priming" synapses, and Ca changes from the inhibition and rebound "triggering" potentiation at recently activated synapses.
منابع مشابه
Deactivation of L-type Ca Current by Inhibition Controls LTP at Excitatory Synapses in the Cerebellar Nuclei
Long-term potentiation (LTP) of mossy fiber EPSCs in the cerebellar nuclei is controlled by synaptic inhibition from Purkinje neurons. EPSCs are potentiated by a sequence of excitation, inhibition, and disinhibition, raising the question of how these stimuli interact to induce plasticity. Here, we find that synaptic excitation, inhibition, and disinhibition couple to different calcium-dependent...
متن کاملPotentiation of Mossy Fiber EPSCs in the Cerebellar Nuclei by NMDA Receptor Activation followed by Postinhibitory Rebound Current
Behavioral and computational studies predict that synaptic plasticity of excitatory mossy fiber inputs to cerebellar nuclear neurons is required for associative learning, but standard tetanization protocols fail to potentiate nuclear cell EPSCs in mouse cerebellar slices. Nuclear neurons fire action potentials spontaneously unless strongly inhibited by Purkinje neurons, raising the possibility ...
متن کاملNothing can be coincidence: synaptic inhibition and plasticity in the cerebellar nuclei.
Many cerebellar neurons fire spontaneously, generating 10-100 action potentials per second even without synaptic input. This high basal activity correlates with information-coding mechanisms that differ from those of cells that are quiescent until excited synaptically. For example, in the deep cerebellar nuclei, Hebbian patterns of coincident synaptic excitation and postsynaptic firing fail to ...
متن کاملCa currents activated by spontaneous firing and synaptic disinhibition in neurons of the cerebellar nuclei.
In neurons of the cerebellar nuclei, long-term potentiation of EPSCs is induced by high-frequency synaptic excitation by mossy fibers followed by synaptic inhibition by Purkinje cells. Induction requires activation of synaptic receptors as well as voltage-gated Ca channels. To examine how Purkinje-mediated inhibition of nuclear neurons affects Ca levels during plasticity-inducing stimuli, we ha...
متن کاملThe organization of plasticity in the cerebellar cortex: from synapses to control.
The cerebellum is thought to play a critical role in procedural learning, but the relationship between this function and the underlying cellular and synaptic mechanisms remains largely speculative. At present, at least nine forms of long-term synaptic and nonsynaptic plasticity (some of which are bidirectional) have been reported in the cerebellar cortex and deep cerebellar nuclei. These includ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 42 شماره
صفحات -
تاریخ انتشار 2008